Melting curve of materials: theory versus experiments
نویسندگان
چکیده
A number of melting curves of various materials have recently been measured experimentally and calculated theoretically, but the agreement between different groups is not always good. We discuss here some of the problems which may arise in both experiments and theory. We also report the melting curves of Fe and Al calculated recently using quantum mechanics techniques, based on density functional theory with generalized gradient approximations. For Al our results are in very good agreement with both low pressure diamondanvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223, Hänström and Lazor 2000 J. Alloys Compounds 305 209) and high pressure shock wave experiments (Shaner et al 1984 High Pressure in Science and Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe our results agree with the shock wave experiments of Brown and McQueen (1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results are at variance with the recent calculations of Laio et al (2000 Science 287 1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000 Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed.
منابع مشابه
Melting of Tin at High Pressures
Introduction Information about the physical properties of materials at high pressures and temperatures is important for advancing our understanding of planetary interiors. Determining the melting curves of materials has attracted much interest in the planetary sciences. For example, the pressure dependencies of the melting curve and viscosity have been linked [1]. Furthermore, the accurate dete...
متن کاملMelting curve and Hugoniot of molybdenum up to 400 GPa by ab initio simulations
We report ab initio calculations of the melting curve and Hugoniot of molybdenum for the pressure range 0 − 400 GPa, using density functional theory (DFT) in the projector augmented wave (PAW) implementation. We use the “reference coexistence” technique to overcome uncertainties inherent in earlier DFT calculations of the melting curve of Mo. Our calculated melting curve agrees well with experi...
متن کاملAb initio melting curve of molybdenum by the phase coexistence method.
Ab initio calculations of the melting curve of molybdenum for the pressure range 0-400 GPa are reported. The calculations employ density functional theory (DFT) with the Perdew-Burke-Ernzerhof exchange-correlation functional in the projector augmented wave (PAW) implementation. Tests are presented showing that these techniques accurately reproduce experimental data on low-temperature body-cente...
متن کاملMelting curve of face-centered-cubic nickel from first-principles calculations
The melting curve of Ni up to 100 GPa has been calculated using first-principles methods based on density functional theory (DFT). We used two complementary approaches: (i) coexistence simulations with a reference system and then free-energy corrections between DFT and the reference system, and (ii) direct DFT coexistence using simulation cells including 1000 atoms. The calculated zero pressure...
متن کاملLetter to editor " Applying High-quality DNA Melting Curve Analysis in Identifying Staphylococcus aureus and Methicillin-resistant Strains "
Letter to editor " Applying High-quality DNA Melting Curve Analysis in Identifying Staphylococcus aureus and Methicillin-resistant Strains " Ramezan Ali Ataee Professor, Department of Medical Microbiology, Faculty of Medicine, Hospital Research Development Committee, Applied Microbiology Research Center, System Biology, Poisoning Institute, Baqiyatallah University of Medical Sciences, T...
متن کامل